



# Searches for Physics Beyond the Standard Model at CDF

Gianluca De Lorenzo, IFAE Barcelona



Lake Louise Winter Institute Alberta, Canada 17-23 Feb 2008

#### Outline

- Only CDF new results: L ~ 2 fb<sup>-1</sup>
- SUSY searches:
  - g/q inclusive production
  - $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$  trilepton production
  - $B_s \rightarrow \mu^+ \mu^-$



- Extra-dimension and signature based searches:
  - $\gamma\gamma + \not\!\!E_T$  and  $\gamma\gamma + \tau$
  - $\gamma + \not\!\!E_T$  and jet +  $\not\!\!E_T$
  - di-jet resonances
- √ see Cuenca's talk including non-SM Higgs results

### Supersymmetry

$$-H - \bigcirc f - - \oplus H - - - - = 0$$

Exact cancellation between fermion and boson loops for higgs

- Elegant solution to hierarchy problem
- Pay the price: 2 times more particles



SUSY must be broken ⇒ model dependent phenomenology:

- ✓ could provide strong dark matter candidate
- ✓ also good framework for unification of forces



Cross Sections for SUSY processes at the Tevatron

#### mSUGRA framework



Typical mSUGRA spectra

- SUSY breaking is gravity mediated.
- Only five free parameters (MSSM has >100):  $M_0$ ,  $M_{1/2}$ ,  $\tan\beta$ ,  $A_0$ ,  $sign(\mu)$ .
- Masses unified at GUT scale: TeV spectrum derived with RGEs.
- •Squarks and gluinos heaviest, neutralino is the LSP.
- R-Parity conserved: sparticles produced in pairs, LSP is stable.
- Typical signature at colliders: large transverse energies and large  $E_{\scriptscriptstyle T}$ .



# Inclusive search for $\tilde{g}/\tilde{q}$ (1)





- ✓ Pair production of gluinos and squarks
- ✓ mSUGRA signature with energetic jets of hadrons and large  $E_{T}$  ( $\tilde{\chi}^{o}$ )
- Difficult search: <u>huge background</u>
  <u>reduction required</u>
  - Beam-gas and cosmics contamination reduced with basic clean-up cuts
  - QCD and W/Z+jets production
  - Irreducible top and Z→vv background
- Specific cuts for SM background reduction
- •SM background estimated from Monte Carlo





# Inclusive search for $\tilde{g}/\tilde{q}$ (II)





- mSUGRA scenario with  $A_0=0$ ,  $tan\beta=5$  and  $sign(\mu)<0$ .
- Scan across  $M_{\widetilde{g}}/M_{\widetilde{q}}$  plane via variation of  $M_0$  and  $M_{1/2}$
- Jet multiplicity depends on  $M_{\widetilde{a}}$  and  $M_{\widetilde{a}}$ :
- 3 analyses developed for best sensitivity
- At least 2, 3 or 4 jets required in the final state
- Selection optimized using  $\not\!E_T$ ,  $E_T$  (jets) and  $H_T = \Sigma E_T$  (jets)

| events in 2.0 fb <sup>-1</sup> | DATA | SM Expected |
|--------------------------------|------|-------------|
| ≥ 4 jets                       | 45   | $48 \pm 17$ |
| $\geq$ 3 jets                  | 38   | $37 \pm 12$ |
| $\geq 2$ jets                  | 18   | $16 \pm 5$  |

#### Good agreement DATA - SM







# Inclusive search for $\tilde{g}/\tilde{q}$ (III)

95% C.L. Exclusion limit on  $M_{\tilde{g}}M_{\tilde{q}}$  and  $M_0M_{1/2}$  planes

- When  $M_{\widetilde{g}}=M_{\widetilde{q}}\to M>392~{\rm GeV/c^2}$
- $M_{\tilde{g}}$  < 280 GeV/c<sup>2</sup> excluded in any case



• LEP limit improved in the region where  $75 < M_0 < 250$  and  $130 < M_{1/2} < 170$  GeV/c<sup>2</sup>





### $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ in trilepton events (1)







- mSUGRA associated  $\tilde{\chi}^0\tilde{\chi}^{\pm}$  production.
- Signature is 3 leptons + ₱<sub>T</sub>
- Multiple SM backgrounds (MC estimated):
  - 3 real leptons: tt, WZ and ZZ
  - 2 real leptons + fake: DY, WW, W+jets
- 5 exclusive channels with <u>3-leptons</u> or <u>2-leptons+iso-track</u> selections
- Large number of control regions defined to check Monte Carlo samples



### $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ in trilepton events (II)

| channel                          | DATA | SM Expected              |
|----------------------------------|------|--------------------------|
| trilepton<br>(3 channels)        | 1    | $0.88 \pm 0.05 \pm 0.13$ |
| dilepton + track<br>(2 channels) | 6    | $5.5 \pm 0.7 \pm 0.9$    |





- Good agreement between SM and DATA in the five signal regions
- Limit on mSUGRA chargino mass has been extracted combining five signal regions:

$$M(\tilde{\chi}^0) > 140 \text{ GeV/c}^2$$

LEP direct limit improved.

# $B_s \rightarrow \mu^+ \mu^- decays (1)$



Sensitive to new physics: if no observation ⇒ can strongly constrain SUSY models



SM prediction: BR =  $3.42 \times 10^{-9}$ 

SUSY enhancement ∝(tanβ)<sup>6</sup>

- Data sample dominated by random combinatorial background
- Extract signal with Neural Net based discriminant

 $B_s$  and  $B_d$  considered separately:

 $B_s \rightarrow \mu\mu$  3 observed events (3.6+/-0.3 exp.bkg.)

 $B_d \rightarrow \mu\mu$  6 observed events (4.3+/-0.3 exp.bkg.)

No significant excess ⇒ exclusion limit





# $B_s \rightarrow \mu^+ \mu^- decays (II)$



Br(B<sub>S</sub> $\rightarrow$ μμ)<5.8×10<sup>-8</sup> @ 95% CL Br(B<sub>d</sub> $\rightarrow$ μμ)<1.8×10<sup>-8</sup> @ 95% CL

#### Constraints on mSUGRA plane





# Gianluca De Lorenzo, IFAE iet+ $\not$ Z\_ and $\gamma+\not$ Z\_



Compactified Large Extra Dimension models (LED) predict direct production of Gravitons:

- $\square$   $G_{KK}$  would leave the detector unobserved: signature with large  $E_T$ .
- □ CDF observes no excess with respect to the SM  $\Rightarrow$  limits on LED fundamental mass scale ( $M_D$ )







#### Dijet mass resonance search



- ☐ Dijet mass spectrum sensitive to new high mass particles decaying into dijets.
- ☐ Large QCD background estimated from data.
- search for resonances by fitting the measured dijet mass.
- no resonance found ⇒ set <u>upper</u> <u>limits on new particle production</u> cross sections.











exclusions up to 1.25 TeV

#### Some excluded mass windows:

Excited quark m = 260 - 870 GeV Color-octet technirho m = 260 - 1110 GeV Axigluon m = 260 - 1250 GeV E<sub>6</sub> diquark m = 260 - 630 GeV

## 



#### signature based search:

- ✓ Sensitive to wide range of new physics models
- ✓ High integrated luminosity

 $\gamma\gamma + \tau$  with 2.0 fb<sup>-1</sup>

 $\gamma\gamma+\not\!\!E_T$  with 1.2 fb<sup>-1</sup> (2 fb<sup>-1</sup> update expected soon)

✓ Backgrounds estimated from data.



many models of new physics with diphoton final state:

- fermiphobic Higgs
- $\bullet \chi^2 \rightarrow \gamma \chi^1$
- b` pairs
- GMSB



example of GMSB

Good agreement DATA - SM

#### Summary



- © CDF has a wide and exciting program of searches for physics beyond the Standard Model.
- make Results with 2 fb<sup>-1</sup> of DATA have been presented.
  - **×** SUSY searches
  - extra-dimension searches
  - signature based searches
  - \* resonances
  - ×
- No evidence of new physics yet... Tevatron will deliver 7 fb<sup>-1</sup> by the end of Run II LHC scheduled to start operations this year

Discovery of new physics could be just around the corner